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Summary. The steady-state electrical properties induced by neutral carriers of ions in 
lipid bilayer membranes and the time dependence of the membrane current for low applied 
voltages are described theoretically in terms of a model which allows for a voltage dependence 
of the interfacial reactions, as well as for a trapezoidal shape of the internal free energy barrier 
for translocation of the complex. The basic features of the model are closely related to those 
of others presented previously (J.E. Hall, C.A. Mead & G. Szabo, 1973, J. Membrane Biol. 
11:75; S.B. Hladky, 1974, Biochim. Biophys. Acta 352"71; S.B. Hladky, 1975, Biochim. 
Biophys. Acta 375:327; Eisenman, Krasne & Ciani, 1975, Ann. N.Y. Acad. Sci. 264"34), but 
the analysis of its consequences on the steady-state and nonsteady-state electrical charac- 
teristics is given here in greater detail and is extended to provide the expression for the zero- 
current potential in ionic gradients. It is shown that parameters, such as the width of the 
trapezoidal barrier, the plane of the reaction and the ratio of the rate constant of transloca- 
tion across the membrane interior to the rate constant of dissociation of the complex, can 
be deduced from steady-state analysis, whereas the individual values of these constants and 
the distance between the equilibrium positions of the complexes are deducible from relaxa- 
tion measurements. 

We present  here  a theore t ica l  model  for ca r r ie r -media ted  p e r m e a t i o n  

with the p r ima ry  pu rpose  of deriving the express ions  for the s teady-s ta te  

electrical  p roper t ies  which are used to analyze  the da ta  in the preceding  

pape r  (Krasne  & Eisenman,  1976). However ,  in o rder  to lay the g r o u n d  

for future  exper imen ta l  studies, in the last section we ex tend  the t r ea tmen t  

also to t rans ients  of cur ren ts  fol lowing steps of  appl ied voltage,  and give 

the explicit  so lu t ion  for the par t i cu la r  case of  low ionic concen t ra t ions  

and  small potent ials .  

The  mode l  shares c o m m o n  features with that  p resented  original ly by 

Hall ,  M e a d  and Szabo (1973) and is basically similar to tha t  used by  
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Fig. 1. Energy profile associated with the mechanism of carrier-mediated transport of ions 
across the membrane. The difference between the internal and the external wells is the 
"affinity" of the ion-carrier dissociation reaction, namely the difference between the standard 

O@/l~ ' chemical potential of the complex at its equilibrium position, #is t J and the sum of the 
standard chemical potentials of the ion in the aqueous phase and that of the neutral carrier 
at its equilibrium position in the membrane (not shown in the figure), #~176 The 
peak between these two wells represents the free energy of the activated complex. Since the 
distance between the ion in the aqueous phase and the complex in the membrane is assumed 
to be a finite fraction of the membrane thickness, the height of the interfacial barrier with 
respect to the wells will be modified by the membrane potential. The central trapezoid re- 
presents the profile of the energy barrier for translocation of the formed complex, a, fl, r 
and q are fractions of the membrane thickness, and their precise meaning should be evident 

from inspection of the figure 

H l a d k y  (1974), except  tha t  its consequences  are ex tended  here  to descr ibe 

the ze ro -cu r ren t  po ten t ia l  in the presence of  ionic mixtures ,  as well as to  

include the effect of  the d i sp lacement  cur rents  in the analysis of re laxat ion.  

T w o  features,  schemat ica l ly  i l lustrated in Fig. 1, dist inguish this mode l  

f rom the s impler  one p r o p o s e d  by L~uger  and Stark  (1970): 

1. The  equ i l ib r ium posi t ion  of  the ion-car r ie r  complexes  is displaced 

f rom the interfaces t oward  the in ter ior  by some fract ion of  the m e m b r a n e  

thickness.  This provides  a physical  basis to accoun t  for a vol tage depen-  

dence of  the height  of  the ac t iva t ion  energy bar r ie r  and  therefore  of  the 

rate  cons tan ts  of  the interracial  react ion.  

2. The  free energy  profile of the charged  ion-carr ier  complexes  in the 

cent ra l  po r t i on  of  the m e m b r a n e  is a p p r o x i m a t e d  by a t rapezoid ,  and  
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its effect on the fluxes is described by a generalized Nernst -Planck equa- 
tion, in which the s tandard chemical potential  is assumed to be a function 
of the distance, x, from the membrane / so lu t ion  interface. 

Since the use of a rather cumbersome formalism for this more elaborate 
model  seems to be unavoidable,  a definition of the various symbols is 
given on page 7. 

Theory 
The Conservation Equations at the Membrane-Solution Boundaries 

Using an Eyring formalism to express the voltage dependence of the 
rate constants of the interfacial reactions, the net rate of format ion of 
complexes at the two interfaces will be 

dNi*(1)-I(~c'iN~*(1)eq'r162 ( i=1 ,2 ,  n) (1) 
dt ""' 

dNi*(2)-I(~c'i'N*(2)e-q*r ( i=1 ,2 ,  n), (2) 
dt ""' 

where Jis indicates the flux of complexes across the membrane  interior. 
The conservat ion equat ions for the neutral  uncomplexed carriers, s, 

are more complicated,  since the exchange of carriers between the mem- 
brane and the surrounding torus, as well as diffusion across the unstirred 
layers, must  also be allowed for. Neglecting for a m o m e n t  the effects of 
the unstirred layers, we will have 

dN*(1) 

and 

- r M  r k M r  dt - k F  G(O)-k~ N*(1)+K G - 

- A* [ N * ( 1 ) -  N*(2)] 

+ i { I(B N~*(1)'e-~'r e' N*(1)e"'r 

(3) 

dN*(2) = kr cs(d ) _ k~ N;* (2) + k T M  c T - k MT N*(2) 
dt 

+ A* [ n *  (1) - N* (2)] (4) 

"~- i=1 ~ {/~B N/~(2)i e r~4- I,( r c' i' N*(2)e-q*r 

At steady-state, and if we neglect a direct exchange of neutral  carriers 
between the solutions and the torus, the flux of carriers in the unstirred 
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layers must be equal to the flux of carriers across the interfaces. This 
requires that 

and 

D~ [c; - ca(0)] = kf ca(0 ) - kf  N*(1) 
6 

D s  
kf Na*(2 ) - kf G(d) = ~ -  [G(d ) -  c~']. 

(5) 

(6) 

If the bulk concentrations of neutral carriers are equal in the two solu- 
tions (c'~ = c~' = cs), and if we impose the condition of steady-state, namely, 
that the derivatives on the left-hand side of Eqs. (1)-(4) vanish, we obtain 
from Eqs. (3), (4), (5) and (6) 

where 

and 

N*(1)=Ns*(St.)-B ~,Jia; N*(2)=N*(st .)+B ~ Jis (7) 
i = 1  i = l  

(I + 6 kf/G) U M cf + kf Cs 
N * ( s t . )  = 

(1 + a kf/Da) kM~ +ks 
(8) 

1 
B = (9) 

(kMr + 2A,)4  kf 
1 + a kf/D~ 

Combining Eq. (7) with (1) and (2), and recalling that 

Jis = I/zF, (10) 

we find after simple rearrangements 

N * ( 1 ) ~ = ~  ' ci zF e(q'+r~ 
(11) 

Jia er,4, ( i= 1, 2, n) 
i r  " '  

,] g~ _ _  - - A t  t t  
N/s(2)i- - ,  c i N*(st . )+B e -(q'+~')~ 

Ki TF- 
(12) 

+ ~ f f e  -~'4' ( i= 1,2, ..., n). 

Eqs. (11) and (12) constitute a system of 2n equations in the 3n unknowns 
N'a(1)1, N**(1)2 . . . .  N*(1),; N*~(2)1, N**(2)2, ... N**(2),; J**, J2, . . . .  Jn,. The 
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n additional relationships which are required for a complete solution of 
the problem are provided by integration of the flux equations across the 
membrane interior. 

Generalized Equations of Nernst-Planck 

It has been shown elsewhere (Ciani, Laprade, Eisenman & Szabo, 
1973a) that the generalized Nernst-Planck equation, extended to allow 
for a nonuniform barrier shape, can be written in the form 

J~* eW,(x ) = d _  [ci, eW,(~)]" (i= 1, 2,... n) (13) 
D** dx ' ' 

where W~*(x) is the sum of the standard chemical potential and of the 
electrostatic potential, namely, 

0 * IX) lhs t 
W~*(x)= RT +r (i= l, 2, ... , n). (14) 

A formal integration of Eq. (13) between the positions (1)i and (2)~ gives 

J is  (2)i w* 
D*~ (i!~ eW~%(X)dx=c*s(1)ie is(~)'-c*~(2)i eWL(2)" (i= 1,2, ..., n). (15) 

Since the shape of the trapezoidal barrier is symmetrical, so that/t~ = 
/,~ Eq. (15) can be rewritten in the form is \ ]i~ 

q5 (1)i-~b(2)i ~b(1 )i - (a (2)i 

J,,=A*,((a)[N,.*(1),e 2 -N~*(2)ie 2 ]; (i= l, 2, ..., n) (16) 

where the surface concentrations Ni*(1)i and N~*(2)i are related to the 
volume concentrations c*s(1)i and c*s(2)~ by 

and 

d__ d 
N~*(1)~= c*s(1)i and N~*(2),=~- c**(2), (i= 1, 2,.. . ,  n) (17) 

- o,q) ] 
2D** exp [ ~ - ~  2 

* �9 (i--1,2, . n). (18) Ais((~ d (2)~ , " ' ,  
S eWL(:') dx 

(1)~ 

It would be easy to show that when the standard chemical potential is a 
constant between the planes (1)i and (2)~, Eq.(16) reduces to the well- 
known, integrated expression for the flux deducible from the classic Nernst- 
Plank equation. 
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Also the Eyring expression for the flux across a single barrier can be 
obtained from Eqs. (16) and (18) when the standard chemical potential 
#i~ has very high values in a narrow region centered around the middle 
of the membrane. If 6" denotes the thickness of this narrow region, the 
integral in the denominator  of Eq. (18) is given approximately by 

(2)i [#Os,(d/2 ) qS(1)~+ ~b(2)i ] 
eW*~s(X)dx~8*exp 4 ( i= 1, 2, n). (19) 

(i), R T  2 ""' 

Inserting Eq. (19) into Eq. (18) and (16) we find 

_ [#is(1)i-#is(d/2)]{Ni,( l) i  e 2 Jis 2D*~ o* o* 6(1)~-,(2), 
~* d exp ~ f  

*(1)i-*(2), (20) 
- N ~ *  (2) /e  2 } (i = 1, 2, . . . ,  n), 

which is formally equivalent to the Eyring expression for the flux. 

Trapezoidal barrier. When the barrier has a trapezoidal shape similar 
to that illustrated in Fig. (1), and the applied field is assumed constant, the 
integral in the denominator  of Eq. (18) can be evaluated analytically. 
However, for simplicity we will assume that the height and the width of 
the barrier are sufficiently big that the total integral between (1)i and (2)i 
can be approximated by the portion of the integral along the flat top of 
the barrier. If so, one finds 

�9 x (1),_+ w ,  + e w's( )dx~-2d exp q~(O)- (21) 
(1)i [ R T  

( i= l, 2, ..., n) 

where ~i is the width of the top of the trapezoid. Since 

q~(0)- �89 - ~b(0) + ~b(d)- q~(1)i + q~(2)i ( i= 1, 2, ,n) (22) 
2 2 "'" 

Eq. (18) becomes 

Ais(O)-ais 

where A*s is a constant defined as 

~* = dS- exp - 

(i = 1, 2, . . . ,  n) (23)  

(i = 1, 2, ..., n). (24) 
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Steady-State Voltage- Current Relationships 

Combining Eq. (16) with Eqs. (11) and (12) and solving for the flux J/s, 
we find 

I +c'{e-4'/2)} (25) =L, (4,) iN** (st.) (c', e 0/2 - c',' e - r B(c'i e ~/2 

( i = l , 2 ,  . . . ,n)  

L,(gp) - (i = 1, 2 , . . . ,  n) (26) 

1+2  ~-/B cosh [fii~b] 

where 

and 
q~(1)~- q5(2)~ 

fl~ q~ = 2 + ri ~b. (27) 

Note that /?~b represents the potential drop between the middle of the 
membrane and the peak of the interracial barrier. If this peak coincided 
with the membrane interface, fli would be 0.5. 

Summating both sides of Eq. (25) with respect to i, and recalling that 

z F ~ Jis = I, one finds 
i=1 ~ {Li(q5 ) [c'i e4'/2 - c'/e-r } 

I 
zF  = N* (st.) i=1 

1 + B  ~ {Li(gP)[c'ie 4'/2 +c'i'e-~ 
i = 1  

(28) 

Note that Eq. (28) gives the current-voltage relationship for membranes 
separating ionic mixtures, and such an expression may be written as an 
explicit function of the potential ~b in the case of a trapezoidal barrier, 
using Eqs. (26) and (23). 

Some general considerations concerning the behavior of Eq. (28) at 
high voltages (l~bl ~ oo) can be made with the help of Eqs. (26) and (23). 
Recalling that fli > cq/2, it should become apparent from a simple inspection 
of such equations that 

+ oo, if fii<�89 

4~+oolim Li(~))e r g K i K  i ,  - 7B = /r ' if fli--�89 (29) 

Consequently, in the limit of high positive voltages, Eq. (28) gives 

lim I _N*(st.) if fli<�89 (30) 
4,~+~ zF  B ' 
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and 
n 

Ki ci I ~ -F , 
lim zF -�89 i=B " ' if fii -12. (31) 

~1 --F ,' 1+ 2-i= Ki ci 

Note that in either case ([3i< �89 or fli=�89 Eq. (28) predicts a finite limiting 
<1 current. However, when fl~ 7, the limiting current given by Eq. (30) 

depends solely on the properties of the neutral carriers and is independent 
of the bound cations', whereas this is not necessarily so when fl~ = 5,1 unless 

the condition Ki-F Ci, >~ 2/B is satisfied. 
i=1 

Explicit I -  V Relationship for the Case of Identical Solutions 
and a Single Permeant Ion 

When c' i = c' i' =- cz, and i is the only permeant ion, Eq. (28) becomes 

I 2Li(~b)c~ sinh [ ~ ]  

zF - Ns* (st.) . (32) 
l + 2BLi(dP)cicosh [ ~ ]  

If the ion concentration and the potential are sufficiently low that 

Eq. (32) simplifies to 

2BLi(4)cicosh [ ~ ]  ~ l, 

I =2N.(st.)Li(dp)cisinh [~]"  
zF 

Using Eqs. (26) and (23), defining 

= A i s / K  i ~4~ i ~ ,  7B  

and recalling that q~ = zF V/RT, Eq. (34) can be written in the form 

I z 2 F  2 - ~ 
G(qS)= V -  R T  K'A*sNs*(St')cl 

2sinh [~-] 

sinh [ ~  qS] + 2#,q5 cosh [fl,~b] 

(33) 

(34) 

(35) 

(36) 
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Near zero-voltage Eq. (36) becomes 

z2 F 2 
G(0) = ~ - - / s  A*s N* (st.)c, - -  

~i q-4~V i 

so that the ratio G(O)/G(O) is given by 

G(4) (cq + 4#,) sinh [ 2~--- ] 

G(0) - 
sinh [~  ~a] + 2#,~a cosh[fi, dp] 

(37) 

(38) 

Eq. (38) is the expression used in the previous paper (Krasne & Eisenman, 
1976; Eq. (2)) to fit the conductance-voltage data. When #i is negligible 
compared to unity, Eq. (38) becomes 

G(~b) sinh [q5/2] 

G(0)=e' sinh [ ~ ]  (39) 

which shows that the conductance ratio depends solely on the width of the 
barrier. 

In the opposite alternative case (#, > 1), Eq. (38) becomes approximately 

G(~b)_ 2 sinh [~b/2] (40) 
G(0) ~b cosh [fli qS] 

in which case the conductance ratio depends only on fly The limiting 
Eqs. (39) and (40) are particularly useful for the evaluation of the param- 
eters cq and fi, when a series of ion-carrier complexes with #,'s ranging 
from values smaller than one to values greater than one is studied, and 
when the assumption is made that the width of the trapezoidal barriers, 
e,, and the planes of reaction, fl~, are the same for all of them. 

Zero- Current Conductance 

When the condition in Eq. (33) is not satisfied, the explicit dependence 
of the zero-current conductance on the concentration of the permeant 
ion can be easily deduced from Eq. (32). For ~b sufficiently small that 
sinh q5/2 ~ q~/2 and cosh #)/2 ~ 1, we find 

l z 2 F  2 Li(O)c i 
G(0)=li+mo V -  RT Ns*(st') l + 2BL,(O)q (41) 
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As expected, this extended model also predicts saturation of the conduc- 
tance at sufficiently high ion concentration. 

When the carrier is added to the lipid solution rather than to the aqueous 
phase, so that the aqueous concentration of carriers is negligible, Eq. (8) 
gives 

(42) N~* (st.) - kU w + kB/( 1 + (~ kf/Ds) 

and Eq. (41) can be more concisely rewritten as 

when 

and 

zZ F2 croci (43) 
G(0)= R T  f2i l + N~c~ 

k T M  

f2 i = Li(O) kM w + kf/(1 + 6 kf/G) (44) 

N~ = 2 BLi(O ). (45) 

Note that, because of the exchange of neutral carriers between the mem- 
brane and the torus, the value of N~ depends here on more parameters than 
in simpler models presented previously (e.g., L~iuger & Stark, 1970; 
Ciani et al., 1973 a, b), and is not necessarily determined by the rate constant 
A* for the movement of carriers across the membrane thickness. For 
instance, if this rate constant were small (which would have implied large 
values for N~ in previous models), in the present model N/ could still be 
small if the rate constant of exchange between the membrane and the torus, 
k MT, is sufficiently large. This can be readily seen from Eqs. (45) and (9), 
and indicates that highly resistive pathways for the movement of free 
carriers across the membrane thickness can be short-circuited by pathways 
via the torus. 

Zero-Current  Membrane Potential in the Presence o f  Ionic Mixtures  

At zero-current Eq. (28) gives 

L,(4o)C',' 
z F  

qSo = ~ V 0  = In i=t7 

Z L (4o)C'  
i = 1  

(46) 
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This expression is only formally similar to the equation of Goldman- 
Hodgkin-Katz, since the quantities Li(qS0) are dependent on voltage. 
When only two ionic species, i and j are present, Eq. (46) can be written 
in the form 

app. ~b o =ln  

c i cj 
app. 

(47) 

where the apparent permeability ratios are 

(~/)app. --LJ(~~ (48) 

With the help of Eqs. (26), (23) and (35) and defining 

Eq. (48) becomes 

~ q . - K i A ,  s, (49) 

cosh [-fiiq~o] 
1 + 2~iq~ o 

sink [2+o ] 
~ I 0t 

Equations of a similar form, and referring to the cases in which trans- 
location across the membrane interior was described either by the classical 
Nernst-Planck or by the Eyring formalisms, have been derived previously 
(Ciani, Eisenman, Laprade, Szabo, 1973 b). Eq. (50) has also been reported 
previously in a preliminary study on the effects of methylation on the 
nonactin and valinomycin types of carriers (Eisenman, Krasne, Ciani, 
1975). 

A notable consequence of Eq. (50) is that the permeability ratio is in 
general a function of voltage, unless the following conditions are satisfied : 

and 

cq=~j=~; f l i=f l j=f l;  (51) 

~i=~j ;  or ~i>>l and #j>>l. (52) 
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Whether the apparent permeability ratio (Pj/P~)ap~. increases or decreases 
with potential is dependent solely on the relative values of the parameters 
#, and #j. Thus, an increase of ~b o will cause an increase or a decrease of 
(PfP~)~pp., depending on whether #~ is larger or smaller than #j, respectively. 

Note that at values of the potential sufficiently low that coshfi~ij ) q50 ~ 1 
and sinh ~i(j) q60/2 ~ ~i(j) ~b0/2, Eq. (50) becomes 

~-i app. = ~-i v-~o = ~ Eq. 1 + 4 Yvj/~j" 

Interpretation of the Permeability Ratios in Terms 
of the Energy Profile of Fig. 1 

In the treatment of ion permeation through channels, Bezanilla and 
Armstrong (1972), as well as Hille (1975), have pointed out that, within 
the framework of Eyring's picture of the diffusion pathways as sequences 
of activation energy barriers, permeabilities and permeability ratios 
depend on the peaks of the activation energy barriers, but are independent 
of the wells, under fairly general conditions. A conclusion of the same type 
can be drawn for ion permeation mediated by carriers. As a matter of 
fact, none of the quantities which appear in Eq. (50) depends on the free 
energy of the two wells of Fig. (1). Let us consider, for instance, the param- 
eter #~, defined in Eqs. (35) and (24) 

- A*/rYn (35') 
i - -  i s / ~ x i  " 

~d* is proportional to the exponential of the free energy difference 
between the internal wells and the peak of the central barrier. According to 
the absolute rate reaction theory, /(~ is proportional to the exponential 
of the free energy difference between the same wells and the interfacial 
peaks (which corresponds to the free energy of the activated complex). 
The ratio between these two quantities, which defines #i, contains the 
energy difference between the two peaks, while the free energy of the well 
cancels out. It can be seen that the same cancellation of the free energy of 
the internal wells occurs also in the products /(i ~*  and /(jA~'s, which 
appear in the definition of the equilibrium permeability ratios given in 
Eq. (49): Denoting by #o (aq) the standard chemical potentials of the ion i 
in the aqueous phase, and by #~ that of the neutral carrier, s, at its 
equilibrium position in the membrane (not shown in Fig. 1), the product 
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KiA* s is given by 

/(i A*s = ~ [exp (#o (an)+ #~RT (1) - #i~ ] /  

(54) 
#is (top of barrier) #is ( 1 ) -  o* 

d2 exp R T  ' 

/~i~,s=~ D* S #~ (1)-#i  S (top of barrier) (55) 
exp R T " 

where ~ is the mean partial molar volume in the aqueous solution. From the 
above expression it is clear that the free energy in the wells, corresponding 

0* to the equilibrium position of the complexes, #is (1), cancels out in the 
product, as we wanted to demonstrate. 

Outline of a Theory for Transients of  Currents Compatible 
with the Extended Model 

Consistent with the model shown in Fig. 1, and approximating the 
aqueous solutions as ideal conductors, having the charges of the diffuse 
double layers distributed uniformly over the interfaces, four surfaces of 
charge distribution can be identified, as is shown schematically in Fig. 2. 
Let o-' and o-" denote the surface densities of the charges of the diffuse 
double layers, and a 1 and o- 2 the densities of the positive charges of the 
ion-carrier complexes at their equilibrium positions in the membrane. 
Since we consider the case of only one ionic species, we will have 1 

0" 1 = 2 f g / s ~ ( l ) ;  o-2 = z rN/s~ (2) .  (56)  

The electroneutrality condition requires that 

0- '+61  - t - 6 2 + 6 " = 0 .  (57) 

If a voltage step, V, is applied across the membrane, a time dependent 
current will arise and decay to its steady-state value. Since in the transient 
state the flux of complexes from the left interface, (') to (1), JA, is different 
from the flux of complexes between (1) and (2), riB, and also different 
from the flux between (2) and ("), Yo none of these fluxes is identifiable with 
the total measured electric current. Such total current is given, instead, 
by the sum of the ionic and the displacement currents, and must be 

1 Since in this paragraph we restrict considerations to the case of only one permeant ion, 
we will omit the subscript, i, from (1)i, (2)i, qi, ri, ~i, fli, ?i. 
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o-' o~ 

EA 

JA 

E B 

JB 

i Yd 
I 

EC 

dE 

I 

(r+q)d 
Fig. 2. Schematic diagram of the membrane, showing the planes where the space charge is 
most concentrated, or' and a" denote the charge densities of the diffuse double layers, cr 1 
and a 2 those of the ion-carrier complexes at their equilibrium positions. 7 is the distance 

between the equilibrium positions of the complexes in membrane thickness units 

continuous in all the three compartments;namely, 

dE a dE e dE c 
I = z F J a + e ~ - = z f J B + a ~  -=zFJc+a dt (58) 

where e is the dielectric constant which is assumed to be uniform, and EA, 
E~ and E c are the electric fields in the three compartments into which the 
membrane is subdivided (see Fig. 2). From simple considerations of 
electrostatics, and with the help of Eq. (57), the electric fields in these three 
regions are found to be given by 

EA-- 
V (1 +7) (1-7)  V 1 - 7  (o_ 1 _a2). 
d 2e al 2e G2; E B = 7 - ~ - 2 ~ -  ' 

V (1-7)  (1+7) 
E c = d  + 2e al + 2 ~  62 

(59) 

where 7d is the distance between the equilibrium positions of the com- 
plexes. Note from Fig. 1 that 

7 + 2 (r + q) = 1. (60) 

Substituting (59) into (58) and recalling that 

dal --zF(JA--JB) ; da2 - z F ( J s - J c )  , (61) & & 

it can be shown that the three expressions for the total current density 
given in Eq. (58) are identical, as they must be, in order to satisfy the basic 
requirement of continuity of the electric current. Choosing to express the 
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current in terms of the flux of complexes and the electric field in the 
middle compartment, we deduce from Eqs. (58) and (59) 

I 1 -  7 d 
zF =JB-+ 2zF dt (~ (62) 

Note that only when ~ = 1, and therefore only when the reaction occurs 
at the interfaces, is the total current expressed by the flux of complexes, 
as was assumed in the original treatment by Stark, Ketterer, Beny and 
L/iuger (1971). 

Expressing a 1 and o- 2 in terms of the surface density of the complexes, 
N~*(1) and Ni*(2), using Eq. (16), and observing that 

q5 (1) - 4) (2) -- 7 ~b (63) 

we find 

I 1 - 7  d [N~*(1)-N~*(2)]. (64) zF -A**((a)[Ni*(1)e~4'/z-Ni*(2)e-'e~/2]+ 2 dt 

The explicit calculation for the current requires the integration of the 
conservation equations (1 to 4), which is a laborious and cumbersome 
task even in the approximation of constant field. However, we will restrict 
considerations to, and will solve the problem for, the particular case in 
which the concentration of the permeant ion and the applied potential 
are sufficiently low that the following approximations can be made: (a) 
the surface densities of the neutral carriers, N*(1) and N*(2), are much 
larger than those of the complexes, Ni*(1 ) and N/*(2), and are practically 
unperturbed by the applied potential; (b) the perturbations of the surface 
densities of the complexes are equal and opposite in the two wells; namely, 

aN~*(1) = - aN~*(2). (65) 

We shall also assume that the electric field in all the three compartments 
of Fig. 2 can be approximated by V/d, so that the additional terms of 
Eq. (59) can be neglected in the exponentials, e q'~ and e -r'r of Eq. (1) as 
well as in the evaluation of the flux of complexes, Ji~-(Note, however, that 
this approximation does not imply that the displacement currents in 
Eq. (58) are negligible compared to the ionic currents, JA, JB and Jc.) 
Since we consider small potentials (q5 < 1), the exponentials e q+, e r~ and 
e y4 can be approximated by 

eqr +qq~); e~r =(1 +rqS); e~r +Tq~). (66) 

With these simplifications, Eqs. (1) and (2) are identical in the first order 
approximation, so that the problem reduces to that of integrating only 
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Eq. (1). As a consequence of assumption (a) and of the approximations 
(65) and (66), using Eq. (16) and (63), and approximating Eq. (23) with the 
low-voltage limit, 

A~*(q~) = 2A*s/~, (67) 

Eq. (1) can be written in the form 

d[6N~*(1)] = Ki-F ci N * ( I  +qdp) - I (~[N~*(Eq . )+6N~*(1 ) ] (1  - r ~ )  
dt  ~ (68) 

- 2 A*s [(N,* (Eq.) + 6 Nr (1))(1 + 7 ~b/2) 
0~ 

-(N,*(Eq.) - 6 N~* (1)) (1 - 7 q~/2)]. 

Considering that / (~ c i N~* =I(Bi N/*(Eq.), and neglecting the terms which 
contain the products q~6Ni*(1 ) as infinitesimals of the second order, 
Eq. (68) becomes 

d[6Nis(1)] = -  c ~ N i * ( 1 ) d t  [/~B + 4 4*,] 

(69) 

where use has been made of Eq. (60) and of the identity 

* - B  /(~ c, N~* = / ( f / ( ,  c~ N~ =K,  Ni*(Eq.). (70) 

Using the same type of approximations, Eq. (64) becomes 

_ d 
I 2A*s [74 N,.*(Eq.) + 2c5 Nz*(1)] +(1-7)~-~ [6N~s(1)]. (71) 

zF  

Integrating Eq. (69) and substituting the result into Eq. (71) we find 

I=I(oo)[1 + F e - t / ~  

where 

and 

I (ov)  = 2 z F  N~* (Eq.) 
e+4#~ 

(72) 

cz [ 1 _ 7 ( 1 + 4  i (74) 
F =  4# i 

1 
z - (75) 

(1 +-Z-14ei \ 

4 ,  (73) 
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Since the parameters ~ and #~ can be deduced from the steady-state 
analysis of the conductance, the experimental determination of the re- 
laxation time and amplitude will allow us to calculate the individual rate 
constants, /s A* as well as 7, which defines the distance between the i ,  is,  
internal wells. 

Note that the amplitude of relaxation, given by Eq. (74), reduces to 
that originally deduced by Stark et al. (1971) (for the case of low potentials 
and low ion concentrations) only when the equilibrium position of the 
complexes is right at the interfaces (7 = 1). In such a case, Eq. (74) yields 

F -  4wl (76) 

and the instantaneous current (t =0), becomes with the aid of Eqs. (72), 
(73), and (76) ,4 

I (O) = 2 zF  N~* (Eq.)A* S ~ .  (77) 

Eq. (77) shows that, when 7 = 1, the instantaneous current depends on the 
rate constant for translocation of the complex across the internal barrier, 
but is independent of the kinetic parameter, #~. By contrast, when 7 < 1 
(equilibrium position of the complexes inside the membrane), the in- 
stantaneous current, deducible from Eqs. (72), (73) and (74), is nor in- 
dependent of the kinetic parameter, #i. Moreover, the amplitude of re- 
laxation, Eq. (74), and the instantaneous current corresponding to the 
case of 7 < 1 are smaller than those given by Eqs. (76) and (77), which refer 
to the case 7 = 1, for comparable values of the other parameters A*,s, #i, 
~, and Ni*(Eq. ). Even though the treatment given here is approximate 
and refers to a very particular case, it indicates that relaxation measure- 
ments might have to be reinterpreted for a more precise evaluation of the 
parameters. 

This work was supported by NSF GB 30835 and U.S. Public Health Service Grant 
NS 09931. 

Definition of the Symbols 

A* rate constant for translocation of the neutral carrier across the membrane 
interior. 

A*s(q5 ) defined by Eq. (18). 
A*s defined by Eq. (24). 
B defined by Eq. (9). 
c'~, c ' ~ '  aqueous concentrations of the ionic species i in the two bulk solutions. 
% c f ,  cs(O ), c~(d) concentrations of the neutral carrier in the bulk aqueous phases, in the 

membrane-surrounding torus, and at the ends of the unstirred layers near the 
membrane-solution interfaces. 
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d 
D~ 
D* 
EA, EB, Ec 
G(O) 
G(r 
I 

kf, kf 
krM kMr 

s , ~ s  

Ir ~ tr i ,  i 

L,(~)) 
N~ 

membrane thickness. 
diffusion coefficient of the carrier in the aqueous phase. 
diffusion coefficient of the complex in the membrane. 
electric fields in the compartments shown in Fig. 2. 
conductance near zero voltage. 
conductance at the normalized voltage qS. 
electric current density. 
flux of complexes across the membrane interior. 
rate constants for the transfer of neutral carriers across the interfaces. 
rate constants for the transfer of carriers from the torus into the membrane and 
vice versa. 
rate constants of the heterogeneous reaction describing the formation and the 
dissociation of the ion-carrier complexes. 

~f/~f. 
defined by Eq. (26). 
defined in Eq. (45). 

N*(1), N*(2) surface densities of the neutral carrier at their equilibrium positions inside 
the membrane; note that the equilibrium positions for the neutral carrier, (1) 
and (2), do not coincide necessarily with the equilibrium positions, (1)i and (2)i, 
of the complex is. 

N* (st.) defined by Eq. (8). 
N*(1)~, Ni*(2)i surface densities of the ion-carrier complexes at their equilibrium positions 

inside the membrane. 

~Vo 

~*(x) 
w, 

F 
fi 

,o,(~) 

r 0(2), 
0o 
f i r ,  O j r  

G1, o" 2 
T 

Qi 

fractions of membrane thickness defined in Fig. 1. 
transmembrane potential and potential at zero-current, respectively. 
defined by Eq. (35). 
defined by Eq. (14). 
free energy difference between the base and the top of the trapezoid in Fig. 1. 
width of the flat top of the energy barrier, measured in membrane thickness units. 
distance of the interfacial peaks from the middle of the membrane, measured in 
membrane thickness units. 
distance between the two internal free energy wells for the complexes, measured 
in membrane thickness units (see Fig. 2). 
relaxation amplitude. 
thickness of the unstirred layers. 
dielectric constant of the membrane phase. 
standard chemical potential of the ion-carrier complex inside the membrane. 
transmembrane potential in R T/zF units, namely zF V/R T = z F ( V ' -  V")/R T. 
electric potential at the positions (1)~ and (2)i, respectively. 
membrane potential at zero current. 
net charge of the diffuse double layers per unit membrane area. For small Debye 
lengths this charge can be viewed as distributed at the membrane-solution 
interfaces. 
surface charge due to the complexes located at their equilibrium positions. 
relaxation time. 
defined in Eq. (44). 
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