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Summary. The steady-state electrical properties induced by neutral carriers of ions in
lipid bilayer membranes and the time dependence of the membrane current for low applied
voltages are described theoretically in terms of a model which allows for a voltage dependence
of the interfacial reactions, as well as for a trapezoidal shape of the internal free energy barrier
for translocation of the complex. The basic features of the model are closely related to those
of others presented previously (J.E. Hall, C.A. Mead & G. Szabo, 1973, J. Membrane Biol.
11:75; S.B.Hladky, 1974, Biochim. Biophys. Acta 352:71; S.B.Hladky, 1975, Biochim.
Biophys. Acta 375:327; Eisenman, Krasne & Ciani, 1975, Ann. N.Y. Acad. Sci. 264:34), but
the analysis of its consequences on the steady-state and nonsteady-state electrical charac-
teristics is given here in greater detail and is extended to provide the expression for the zero-
current potential in ionic gradients. It is shown that parameters, such as the width of the
trapezoidal barrier, the plane of the reaction and the ratio of the rate constant of transloca-
tion across the membrane interior to the rate constant of dissociation of the complex, can
be deduced from steady-state analysis, whereas the individual values of these constants and
the distance between the equilibrium positions of the complexes are deducible from relaxa-
tion measurements. ‘

We present here a theoretical model for carrier-mediated permeation
with the primary purpose of deriving the expressions for the steady-state
electrical properties which are used to analyze the data in the preceding
paper (Krasne & Eisenman, 1976). However, in order to lay the ground
for future experimental studies, in the last section we extend the treatment
also to transients of currents following steps of applied voltage, and give
the explicit solution for the particular case of low ionic concentrations
and small potentials.

The model shares common features with that presented originally by
Hall, Mead and Szabo (1973) and is basically similar to that used by
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Fig. 1. Energy profile associated with the mechanism of carrier-mediated transport of ions
across the membrane. The difference between the internal and the external wells is the
“affinity” of the ion-carrier dissociation reaction, namely the difference between the standard
chemical potential of the complex at its equilibrium position, u°*(1), and the sum of the
standard chemical potentials of the ion in the aqueous phase and that of the neutral carrier
at its equilibrium position in the membrane (not shown in the figure), 4 (aq.)+u*(1). The
peak between these two wells represents the free energy of the activated complex. Since the
distance between the ion in the aqueous phase and the complex in the membrane is assumed
to be a finite fraction of the membrane thickness, the height of the interfacial barrier with
respect to the wells will be modified by the membrane potential. The central trapezoid re-
presents the profile of the energy barrier for translocation of the formed complex. «, §, r
and g are fractions of the membrane thickness, and their precise meaning should be evident
from inspection of the figure

Hladky (1974), except that its consequences are extended here to describe
the zero-current potential in the presence of ionic mixtures, as well as to
include the effect of the displacement currents in the analysis of relaxation.

Two features, schematically illustrated in Fig. 1, distinguish this model
from the simpler one proposed by Liuger and Stark (1970):

1. The equilibrium position of the ion-carrier complexes is displaced
from the interfaces toward the interior by some fraction of the membrane
thickness. This provides a physical basis to account for a voltage depen-
dence of the height of the activation energy barrier and therefore of the
rate constants of the interfacial reaction.

2. The free energy profile of the charged ion-carrier complexes in the
central portion of the membrane is approximated by a trapezoid, and
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its effect on the fluxes is described by a generalized Nernst-Planck equa-
tion, in which the standard chemical potential is assumed to be a function
of the distance, x, from the membrane/solution interface.

Since the use of a rather cumbersome formalism for this more elaborate
model seems to be unavoidable, a definition of the various symbols is
given on page 7.

Theory
The Conservation Equations at the Membrane-Solution Boundaries

Using an Eyring formalism to express the voltage dependence of the
rate constants of the interfacial reactions, the net rate of formation of
complexes at the two interfaces will be

ANA(1) - i}
;t()=Kfc;Ns*(1)eqf¢—Kfz\Ji=*;(1),.e—*f¢—Jis (i=1,2,...,n) (1)
ANZQ2) - _
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where J;; indicates the flux of complexes across the membrane interior.

The conservation equations for the neutral uncomplexed carriers, s,
are more complicated, since the exchange of carriers between the mem-
brane and the surrounding torus, as well as diffusion across the unstirred
layers, must also be allowed for. Neglecting for a moment the effects of
the unstirred layers, we will have

i%i%kf e(0)— k3 NX(L)+K™ ] —KMT N¥(1)
— AXINF(D)~ NF(2)] (3)
+ Z {KB Nx(1),e "¢ —KF ¢, N*(1) eqﬂf’}
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+ATINF(1)—N¥(2)] (4)
+3 {K_? N¥(2); e"* = KF ¢} N*(2) e—q“f’}.
i=1

At steady-state, and if we neglect a direct exchange of neutral carriers
between the solutions and the torus, the flux of carriers in the unstirred
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layers must be equal to the flux of carriers across the interfaces. This
requires that

2o e 0= ¢, 0)=KE N (1) )
and
D
K2 NFQ) =K )= [ed)—c] ©)

If the bulk concentrations of neutral carriers are equal in the two solu-
tions (c;=c; =c,), and if we impose the condition of steady-state, namely,
that the derivatives on the left-hand side of Egs. (1)(4) vanish, we obtain
from Egs. (3), (4), (5) and (6)

N}(D)=Nxst)—B) Ji;  N*Q2)=NX(st)+B) J,, (7)
i=1 i=1
where ‘
1+ 8kE/D ) K™ T+ kF
Ny =D e T s ®)
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s+ 240 T 5k,
Combining Eq. (7) with (1) and (2), and recalling that
Y J,=1/zF, (10)
i=1
we find after simple rearrangements
Kf I e
NE(= 5 ¢ [N*(st) B Z—] Q00 .
Jis P H (
_fﬁ € (l = 15 2: s }’l)
KT
NEQ)= i ¢ [N*(st) +B- ] ~@ir)¢ i
JiS —ri¢ . ( )
5 ¢ (i=12,...,n).

Egs. (11) and (12) constitute a system of 2n equations in the 3n unknowns
NE )y, N5, o NE(D,s N2, N32),s - NEQR)s Jies a0 oo T The
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n additional relationships which are required for a complete solution of
the problem are provided by integration of the flux equations across the
membrane interior.

Generalized Equations of Nernst-Planck

It has been shown elsewhere (Ciani, Laprade, Eisenman & Szabo,
1973 a) that the generalized Nernst-Planck equation, extended to allow
for a nonuniform barrier shape, can be written in the form

&
—%ewwﬂ—— [c£e™ ™) (i=1,2,...,n) (13)

where W*(x) is the sum of the standard chemical potential and of the
electrostatic potential, namely,

1 (x)
RT

Wis (x)=

+o(x); (=12,...,n). (14)

A formal integration of Eq. (13) between the positions (1); and (2), gives

(2):

VSO dx = e (1), MW ¥ (2) M ED: (1=1,2, ..., n).
D* i3 i
is (1)

(15)

Since the shape of the trapezoidal barrier is symmetrical, so that pP*(1),=
12*(2),, Eq. (15) can be rewritten in the form

$(1)i =2 _si—d)
Jo=AKP)[NF1)ye *  —NEQ2)e 2] =12..,n) (16)

where the surface concentrations N*(1), and N*(2), are related to the
volume concentrations c¥(1), and c%(2); by

(1)———c*(1) and N*(2), ——c*(2) (=1,2,....,n) (17)

and

upr(1); | o)+ (),
2D* °Xp [ RT |+ 2 ] _
Af(d)= . ; (=12,...,n. (18)

*
j' ers(x) dx
1)

It would be easy to show that when the standard chemical potential is a
constant between the planes (1), and (2);,, Eq. (16) reduces to the well-

known, integrated expression for the flux deducible from the classic Nernst-
Plank equation.
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Also the Eyring expression for the flux across a single barrier can be
obtained from Egs. (16) and (18) when the standard chemical potential
©2(x) has very high values in a narrow region centered around the middle
of the membrane. If 6* denotes the thickness of this narrow region, the
integral in the denominator of Eq. (18) is given approximately by
@ [u?s*(d/2) d(1);+ ¢(2); ] (

Wis(x) ~ 5%
(!)ie dx~6* exp | —p7—+ 3

Inserting Eq. (19) into Eq. (18) and (16) we find
_2D U= HA/2) T ¢y 25820
‘]is— 5*d eXp [ RT ] {]Vis(l)ie

_91)i—d(2)
_Mf(z)le z } (i:1527"‘9n)a

i=1,2,...,n. (19

which is formally equivalent to the Eyring expression for the flux.

Trapezoidal barrier. When the barrier has a trapezoidal shape similar
to that illustrated in Fig. (1), and the applied field is assumed constant, the
integral in the denominator of Eq. (18) can be evaluated analytically.
However, for simplicity we will assume that the height and the width of
the barrier are sufficiently big that the total integral between (1), and (2);
can be approximated by the portion of the integral along the flat top of
the barrier. If so, one finds

sinh | 2 ¢
@x *(1),+ W, ¢ [7 ]
"W Iy~ 2 d ex [LJF 0 ——] LN Y

i p|"RE O] e

(i=1,2,....n)
where o, 1s the width of the top of the trapezoid. Since
d . .
Eq. (18) becomes
sinh [% ¢]

where A% is a constant defined as

o D¥* W.
Af="5xp [—R,}] (i=1,2,...,n). (24)
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Steady-State Voltage- Current Relationships

Combining Eq. (16) with Eqgs. (11) and (12) and solving for the flux J,
we find

I
Jis=Li() {Ns*(st.) (cie?? —cle )~ —F B(c,e®? + C;’e—¢/2)}

(25)
i=12,....n)

where B

L(¢)= Y f(";“(d’) (i=1,2,...,n) (26)
142 is_B cosh [f;¢]
R Ki
and

ﬁi¢=w+ri¢~ 27)

Note that ;¢ represents the potential drop between the middle of the
membrane and the peak of the interfacial barrier. If this peak coincided
with the membrane interface, §, would be 0.5.

Summating both sides of Eq. (25) with respect to i, and recalling that

zF ) J, =1, one finds
= , Y ALt~ e}
—=N*(st.)—

2k 1+B

i

i

(28)
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1
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Note that Eq. (28) gives the current-voltage relationship for membranes
separating ionic mixtures, and such an expression may be written as an
explicit function of the potential ¢ in the case of a trapezoidal barrier,
using Eqgs. (26) and (23).

Some general considerations concerning the behavior of Eq. (28) at
high voltages (|¢| > o) can be made with the help of Egs.(26) and (23).
Recalling that ;> «;/2, it should become apparent from a simple inspection
of such equations that

+ 00, if B;<3
F 29
R @

lim L,(¢)e??=
¢+ 3

N f
o

5 _
K=

Consequently, in the limit of high positive voltages, Eq. (28) gives
. I N*(st)

lim —=-2
¢—}r-|l:loo zF B ’

if f<t (30)
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and
Y. Ki¢
im i=lN*(st)A———— if p,=1 (31)
bot+wzF 25T B& o) S
1+72K1 Ci

Note that in either case (8;,<3 or f;=3%) Eq.(28) predicts a finite limiting
current. However, when B;<%, the limiting current given by Eq.(30)
depends solely on the properties of the neutral carriers and is independent
of the bound cations; whereas this is not necessarily so when B;=1, unless

the condition ) K¥c¢}>2/B is satisfied.

i=1

Explicit I —V Relationship for the Case of Identical Solutions
and a Single Permeant Ion

When c;=c} =c¢;, and i is the only permeant ion, Eq. (28) becomes

. 2L(¢)c, sinh [%]
L N¥(st) . (32)

zF 1+2BL,(¢)c; cosh [?]

If the ion concentration and the potential are sufficiently low that

2BL($)c, cosh [%’—] <1, (33)
Eq. (32) simplifies to
I . ¢
O N*(st)L,(¢)c, sinh [ﬁ] . (34)
zF 2
Using Egs. (26) and (23), defining
= At/K?P (35)

and recalling that ¢ =z FV/RT, Eq. (34) can be written in the form

2sinh [ﬂ]
G(qb)—L—ZZFZK/I*N*(st)c 2
=y T RT ifists )6

(36)

sinh [% (f)] +2W,¢ cosh [ﬁ,(p]
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Near zero-voltage Eq. (36) becomes

22F? A% N*
G(0)= RT K ALNF (st)c; o+ 4%, (37)
so that the ratio G(¢)/G(0) is given by
v [©
G(d’): (a;+4W,) sinh [7] | -
GO nn [% ¢] +24,6 cosh[B,4]

Eq. (38) is the expression used in the previous paper (Krasne & Eisenman,
1976; Eq.(2)) to fit the conductance-voltage data. When W, is negligible
compared to unity, Eq. (38) becomes

G@)_ sinh[¢/2]
GO) sinh [z‘;i]

(39)

which shows that the conductance ratio depends solely on the width of the
barrier.
In the opposite alternative case (w; > 1), Eq. (38) becomes approximately

G(¢)_, _sinh[¢/2] 0
GO) ¢ cosh[B;¢]

in which case the conductance ratio depends only on ;. The limiting

Eqgs. (39) and (40) are particularly useful for the evaluation of the param-

eters o; and B; when a series of ion-carrier complexes with W;’s ranging

from values smaller than one to values greater than one is studied, and

when the assumption is made that the width of the trapezoidal barriers,

o;, and the planes of reaction, f;, are the same for all of them.

Zero-Current Conductance

When the condition in Eq. (33) is not satisfied, the explicit dependence
of the zero-current conductance on the concentration of the permeant
ion can be easily deduced from Eq.(32). For ¢ sufficiently small that
sinh ¢/2~ ¢/2 and cosh ¢/2~1, we find

252
Z°F"

T L0)c,

v~0V RT

(41)
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As expected, this extended model also predicts saturation of the conduc-
tance at sufficiently high ion concentration.

When the carrier is added to the lipid solution rather than to the aqueous
phase, so that the aqueous concentration of carriers is negligible, Eq. (8)
gives

kTMCT

NGO = T+ 547D, “2)

and Eq. (41) can be more concisely rewritten as

z?F? e,
GO)=—7 T+ N, (43)
when
kTM
2=L0) KMT 4 kB/(1+6kE/D) (44
and
N;=2BL0). (45)

Note that, because of the exchange of neutral carriers between the mem-
brane and the torus, the value of N, depends here on more parameters than
in simpler models presented previously (e.g, Lduger & Stark, 1970;
Ciani et al., 1973 a, b), and is not necessarily determined by the rate constant
A* for the movement of carriers across the membrane thickness. For
instance, if this rate constant were small (which would have implied large
values for N, in previous models), in the present model N could still be
small if the rate constant of exchange between the membrane and the torus,
kMT s sufficiently large. This can be readily seen from Egs. (45) and (9),
and indicates that highly resistive pathways for the movement of free
carriers across the membrane thickness can be short-circuited by pathways
via the torus.

Zero-Current Membrane Potential in the Presence of Ionic Mixtures

At zero-current Eq. (28) gives

ZF Z Li¢o)ci
2 VYVo=lni=t 4
RT Vy=In (46)

n

; Lioo)c;

¢o=
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This expression is only formally similar to the equation of Goldman-
Hodgkin-Katz, since the quantities L,(¢,) are dependent on voltage.
When only two ionic species, i and j are present, Eq. (46) can be written
in the form

! @7)

where the apparent permeability ratios are

B L (o)
L = 10 48
(E>app. Ll(¢0) ( )
With the help of Egs. (26), (23) and (35) and defining
P K, A%
B Do ot £
(7).~ K2 )
Eq. (48) becomes
142w, ¢ cosh[f;¢,]
Y inh [ﬁ¢ ]
B
Pi app. Pl Eq 1+2WJ¢0 COSh[ﬂjd)OJ

sinh [% gbo]

Equations of a similar form, and referring to the cases in which trans-
location across the membrane interior was described either by the classical
Nernst-Planck or by the Eyring formalisms, have been derived previously
(Ciani, Eisenman, Laprade, Szabo, 1973 ). Eq. (50) has also been reported
previously in a preliminary study on the effects of methylation on the
nonactin and valinomycin types of carriers (Eisenman, Krasne, Ciani,
1975).

A notable consequence of Eq.(50) is that the permeability ratio is in
general a function of voltage, unless the following conditions are satisfied:

O =0;=0; ﬂi=ﬂj=ﬁ; (51)
and

W;=w;; or w;>1 and W;>1. (52)
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Whether the apparent permeability ratio (B/B),,, increases or decreases
with potential is dependent solely on the relative values of the parameters
w; and w;. Thus, an increase of ¢, will cause an increase or a decrease of
(B/P),pp.» depending on whether W, is larger or smaller than W, respectively.

Note that at values of the potential sufficiently low that cosh B, ;, ¢~ 1
and sinh o, ; ¢o/2~ ;5 Po/2, Eq. (50) becomes

BB e
B app. F/v_o F Eq.1+4wj/aj

Interpretation of the Permeability Ratios in Terms
of the Energy Profile of Fig. 1

In the treatment of ion permeation through channels, Bezanilla and
Armstrong (1972), as well as Hille (1975), have pointed out that, within
the framework of Eyring’s picture of the diffusion pathways as sequences
of activation energy barriers, permeabilities and permeability ratios
depend on the peaks of the activation energy barriers, but are independent
of the wells, under fairly general conditions. A conclusion of the same type
can be drawn for ion permeation mediated by carriers. As a matter of
fact, none of the quantities which appear in Eq. (50) depends on the free
energy of the two wells of Fig. (1). Let us consider, for instance, the param-
eter w,, defined in Egs. (35) and (24)

W, =A%/KE. (35

A% is proportional to the exponential of the free energy difference
between the internal wells and the peak of the central barrier. According to
the absolute rate reaction theory, K? is proportional to the exponential
of the free energy difference between the same wells and the interfacial
peaks (which corresponds to the free energy of the activated complex).
The ratio between these two quantities, which defines w,, contains the
energy difference between the two peaks, while the free energy of the well
cancels out. It can be seen that the same cancellation of the free energy of
the internal wells occurs also in the products K, 4} and K;A%, which
appear in the definition of the equilibrium permeability ratios given in
Eq. (49): Denoting by u! (aq) the standard chemical potentials of the ion i
in the aqueous phase, and by p27(1) that of the neutral carrier, s, at its
equilibrium position in the membrane (not shown in Fig. 1), the product
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K, A% is given by

R A% =7 [exp (u? (aq)+p5"(1) —u?:(l))]

RT )
D [e P (ﬂ?:(l)—u?:(top of barrier)
' dZ X RT :|:
> - DIk ] 0*(1)— u2*(top of barri
KiA;ks:E d;s exp [/11 (aq)+ﬂs (1) Ru; (topo arrler)] (55)

where 7 is the mean partial molar volume in the aqueous solution. From the
above expression it is clear that the free energy in the wells, corresponding
to the equilibrium position of the complexes, ud (1), cancels out in the
product, as we wanted to demonstrate.

Outline of a Theory for Transients of Currents Compatible
with the Extended Model

Consistent with the model shown in Fig. 1, and approximating the
aqueous solutions as ideal conductors, having the charges of the diffuse
double layers distributed uniformly over the interfaces, four surfaces of
charge distribution can be identified, as is shown schematically in Fig. 2.
Let ¢’ and ¢” denote the surface densities of the charges of the diffuse
double layers, and ¢, and o, the densities of the positive charges of the
ion-carrier complexes at their equilibrium positions in the membrane.
Since we consider the case of only one ionic species, we will have?

0,=2FNx(1);  0,=2FN(). (56)
The electroneutrality condition requires that
o' +o,+0,+0"=0. (57

If a voltage step, V, is applied across the membrane, a time dependent
current will arise and decay to its steady-state value. Since in the transient
state the flux of complexes from the left interface, () to (1), J,, is different
from the flux of complexes between (1) and (2), Jg, and also different
from the flux between (2) and ("), J.., none of these fluxes is identifiable with
the total measured electric current. Such total current is given, instead,
by the sum of the ionic and the displacement currents, and must be

1 Since in this paragraph we restrict considerations to the case of only one permeant ion,
we will omit the subscript, 7, from (1);, (2);, ¢;, 7, %, Bi, ¥;-
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Fig. 2. Schematic diagram of the membrane, showing the planes where the space charge is

most concentrated. ¢ and ¢” denote the charge densities of the diffuse double layers, o,

and ¢, those of the ion-carrier complexes at their equilibrium positions. y is the distance
between the equilibrium positions of the complexes in membrane thickness units

continuous in all the three compartments; namely,

dE dE dE
I=zFl o gtmePlyte g t=Flete oo (58)

where ¢ is the dielectric constant which is assumed to be uniform, and E ,,
Eg and E_ are the electric fields in the three compartments into which the
membrane is subdivided (see Fig.2). From simple considerations of

electrostatics, and with the help of Eq. (57), the electric fields in these three
regions are found to be given by

Vo (47 (1-7) V. 1=y
Ey=mmm g m oo Ep=d o (01 —03); .
V.o (1-y (1+7)
EC=7+ o g, + Te 0,

where yd is the distance between the equilibrium positions of the com-
plexes. Note from Fig. 1 that

y+20r+q)=1. (60)
Substituting (59) into (58) and recalling that

doy

dt

do
=zF(J,— Jp); d; =zF(Jy—Jo), (61)
it can be shown that the three expressions for the total current density
given in Eq. (58) are identical, as they must be, in order to satisfy the basic
requirement of continuity of the electric current. Choosing to express the
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current in terms of the flux of complexes and the electric field in the
middle compartment, we deduce from Eqgs. (58) and (59)

I 1—y d

2F ot (o) 2

Note that only when y=1, and therefore only when the reaction occurs
at the interfaces, is the total current expressed by the flux of complexes,
as was assumed in the original treatment by Stark, Ketterer, Beny and
Lauger (1971).

Expressing o; and o, in terms of the surface density of the complexes,
N*(1) and N*(2), using Eq. (16), and observing that

d(1)~dp2)=y¢ (63)
we find
—ZI——A*(¢)[ N#(1) e’ —N¥(2) e “"”/2]+ [ T()—=NI2). (64)

The explicit calculation for the current requires the integration of the
conservation equations (1 to 4), which is a laborious and cumbersome
task even in the approximation of constant field. However, we will restrict
considerations to, and will solve the problem for, the particular case in
which the concentration of the permeant ion and the applied potential
are sufficiently low that the following approximations can be made: (a)
the surface densities of the neutral carriers, N*(1) and N*(2), are much
larger than those of the complexes, N*(1) and N*(2), and are practically
unperturbed by the applied potential; (b) the perturbations of the surface
densities of the complexes are equal and opposite in the two wells; namely,

SNE(L)= — SNX(2) (65)

We shall also assume that the electric field in all the three compartments
of Fig.2 can be approximated by V/d, so that the additional terms of
Eq. (59) can be neglected in the exponentials, e%? and e~"'?, of Eq. (1) as
well as in the evaluation of the flux of complexes, J,,. (Note, however, that
this approximation does not imply that the displacement currents in
Eq. (58) are negligible compared to the ionic currents, J,, J; and J..)
Since we consider small potentials (¢ <1), the exponentials ¢??, ¢’® and

e’® can be approximated by
e?=(1+qd); e?=(1+r¢); e*=(1+7y¢). (66)

With these simplifications, Egs. (1) and (2) are identical in the first order
approximation, so that the problem reduces to that of integrating only



60 S. Ciani

Eq. (1). As a consequence of assumption (a) and of the approximations
(65) and (66), using Eq. (16) and (63), and approximating Eq. (23) with the
low-voltage limit,

AE(P)=2A4%/0, (67)
Eq. (1) can be written in the form
AONEDY _ g ¢, Np(1-+99)~ RPINA(EQ) + NI = 7)
e (68)
_2 A (B FONEO) L 7 12)

o4
—(NE(Eq)—dNZ()) (L -7 ¢/2)].

Considering that K¥ ¢; N* = K? N*(Eq.), and neglecting the terms which
contain the products ¢SN*(1) as infinitesimals of the second order,
Eq. (68) becomes

dONSDT 51y [K§+i g;x;]
dt o

. (69)

-y >R Az?ks

+NyEa) [ 5L RI-27 22| 6
2 o

where use has been made of Eq. (60) and of the identity

K{ ¢; Ny =K K; ¢; N =K? N (Eq.). (70)

Using the same type of approximations, Eq. (64) becomes

I 24% , . d
=B 09 N2(Ba)+20 NI+ (1=9) 3 [N (D)

Integrating Eq. (69) and substituting the result into Eq. (71) we find

[=I(co)[141 e~¥] (72)
where
A* .
—_ '* S
1) =22F NE(EQ)  Fife= b, (73)
o 4 \1?
=5 [1—y(1+;wi)] (74)
and
1
SN S (75)

- 4w,
K (1+ﬂ)
24
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Since the parameters « and W; can be deduced from the steady-state
analysis of the conductance, the experimental determination of the re-
laxation time and amplitude will allow us to calculate the individual rate
constants, K2, /I;"s, as well as y, which defines the distance between the
internal wells.

Note that the amplitude of relaxation, given by Eq.(74), reduces to
that originally deduced by Stark et al. (1971) (for the case of low potentials
and low ion concentrations) only when the equilibrium position of the
complexes is right at the interfaces (y=1). In such a case, Eq. (74) yields

_ 4w,

r (76)

o
and the instantaneous current (t=0), becomes with the aid of Egs. (72),
(73), and (76)

1(0)=2zF N*(Eq.) Ajﬁ;%. (77)

Eq. (77) shows that, when y =1, the instantaneous current depends on the
rate constant for translocation of the complex across the internal barrier,
but is independent of the kinetic parameter, Ww;. By contrast, when y<1
(equilibrium position of the complexes inside the membrane), the in-
stantaneous current, deducible from Egs. (72), (73) and (74), is not in-
dependent of the kinetic parameter, w;. Moreover, the amplitude of re-
laxation, Eq. (74), and the instantaneous current corresponding to the
case of y <1 are smaller than those given by Eqs. (76) and (77), which refer
to the case y=1, for comparable values of the other parameters /I?s, w;,
o, and N*(Eq.). Even though the treatment given here is approximate
and refers to a very particular case, it indicates that relaxation measure-
ments might have to be reinterpreted for a more precise evaluation of the
parameters.

This work was supported by NSF GB 30835 and U.S. Public Health Service Grant
NS 09931.

Definition of the Symbols

A¥ rate constant for translocation of the neutral carrier across the membrane
interior,

Ax(¢) defined by Eq. (18).

Ax defined by Eq. (24).

B defined by Eq. (9).

’r
i

L C aqueous concentrations of the ionic species i in the two bulk solutions.

s €5, ¢,(0), ¢,(d) concentrations of the neutral carrier in the bulk aqueous phases, in the
membrane-surrounding torus, and at the ends of the unstirred layers near the
membrane-solution interfaces.

(oW oY
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d membrane thickness.

D, diffusion coefficient of the carrier in the aqueous phase.

D¥ diffusion coefficient of the complex in the membrane.

E,, E;, E. electric fields in the compartments shown in Fig. 2.

G(0) conductance near zero voltage.

G(9) conductance at the normalized voltage ¢.

I electric current density.

Jis flux of complexes across the membrane interior.

kL, kB rate constants for the transfer of neutral carriers across the interfaces.

kSTM , kM7 rate constants for the transfer of carriers from the torus into the membrane and
vice versa.

K K? rate constants of the heterogeneous reaction describing the formation and the
dissociation of the ion-carrier complexes.

g, KF/RE.

L) defined by Eq. (26).

A defined in Eq. (45).

N¥(1), N*(2) surface densities of the neutral carrier at their equilibrium positions inside
the membrane; note that the equilibrium positions for the neutral carrier, (1)
and (2), do not coincide necessarily with the equilibrium positions, (1); and (2);,
of the complex is.

N¥(st.) defined by Eq. (8).

Ni(1);, N(2), surface densities of the ion-carrier complexes at their equilibrium positions

i

inside the membrane.

=

q.r fractions of membrane thickness defined in Fig. 1.

V., V, transmembrane potential and potential at zero-current, respectively.

W, defined by Eq. (35).

Wik(x) defined by Eq. (14).

W, free energy difference between the base and the top of the trapezoid in Fig. 1.

o width of the flat top of the energy barrier, measured in membrane thickness units.

b; distance of the interfacial peaks from the middle of the membrane, measured in
membrane thickness units.

¥y distance between the two internal free energy wells for the complexes, measured
in membrane thickness units (see Fig. 2).

r relaxation amplitude.

o thickness of the unstirred layers.

] dielectric constant of the membrane phase.

©oE(x) standard chemical potential of the ion-carrier complex inside the membrane.

¢ transmembrane potential in RT/zF units, namely zFV/RT =zF(V'—V")/RT.

d(1);, ¢(2); electric potential at the positions (1), and (2);, respectively.

oo membrane potential at zero current.

a,a” net charge of the diffuse double layers per unit membrane area. For small Debye
lengths this charge can be viewed as distributed at the membrane-solution
interfaces.

G150y surface charge due to the complexes located at their equilibrium positions.

T relaxation time.

@ defined in Eq. (44).
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